Parts Committee

Chair: John Bosin
Akzo-Nobel

Vice Chair: Kevin Mehok CARCARE Collision Centers

David Knapp

 Acoat Services Manager Akzo Nobel Coatings Inc.
Points to Cover

- Repair Inefficiency
- Parts Replacement Inefficiency
- Components of an effective parts process
- Effects of Replacing Strategy
- Repair VS Replace profitability
\diamond Replace Strategy Support Data
- Balanced severity/parts ratio

Repair Inefficiency

- Labor capacity is constrained:
- Fewer technicians available
- Lower skilled techs
\square Job for job, replacing is faster on body labor-time equals money!
- Replacing is more efficient with materials (no/minimal priming)
- Parts focus leads to efficiency as measured through gross profit per hour worked

Parts Replacement Inefficiency

- Parts that create more labor (Used)
- When estimating processes are not properly organized
- Parts that don't fit without modification
- Time needed to get parts
- Replacements that are invasive to the vehicle structure (potential for inadequate repairs)
- Replacements leading to additional labor operations/delays (R\&I glass, additional refinish operations, etc.)
- Lack of effective/efficient parts procedures

Effective Parts Processes

- Estimating / Blueprinting Processes
- Written Parts Policies
- Parts Ordering Procedure
- Parts Status Verification
- Parts Receiving Process
- Invoicing / Costing Process
- Delivery of Parts to Vehicle/Technician Bay
- Parts Return Process
- Credit Memo Tracking
- Backorder Parts Follow-up
- Stock Parts / Alternative Parts Processes

Effects of Replacing Strategy

As parts sales increase ...

- Shops become more profitable
- Material profitability increases
- Labor GP \$ increase
- Overhead expense per parts $\$$ declines
- GP\$ per hour worked increases

Repair VS Replace Profitability

- Conventional thought is that "repairing" yields a higher gross profit percentage.
- Job for job, repairing can retain more profit (\$ and \%)

Not true when considering time as a factor in the equation
TIME = PEOPLE!!!

Replacing Strategy =

Shop Profitability Improves

Time is the key factor to consider

REPAIR CASE

	40		Sale		Profit	GP \%
Body Labor	5 Hrs	\$	150.00	\$	82.50	55\%
Paint Labor	1.5 Hrs	\$	45.00	\$	27.00	60\%
Parts	0	\$	-		-	25\%
Body Materia		\$	-	\$	-	30\%
Paint Materia		\$	22.50	\$	6.75	30\%
Totals		\$	217.50	\$	116.25	53\%
	GP \% =		53\%			
	GP \$ =	\$	116.25			
GP\$ / Hour $=\$ 17.88$						

REPLACE CASE

$$
\text { GP\$ / Hour }=\$ 32.81
$$

Note:

Total Labor: (Indentical Task efficiency not considered in Paint shop) Only If we achieve an Additional labor efficiency of :
is it better from a GP\$/ Hour in this case to repair verses replace.
Repair Case must be 283% when replace case is 100%

Replacing Strategy =

Material Profit Improves

Material GP\% TO Parts \% of Sales

Replacing Strategy = Labor Profit \$ Improves

sikkens

GP\$ / Tech TO Parts \% of Sales

Aug 2002- Aug 2005

Replacing Strategy =

Overhead exp per parts \$ declines

Total OH TO Parts \% of Sales

Replacing Strategy =

G GP\$ per hour worked improves

GP\$ / HR TO Parts \% of Sales

sikkens

selected

Balanced Severity

- As parts as a \% of sales increases repairs may be faster, but severity also increases
- Must manage both sides of equation (repairing \& replacing)
- Current ideal ratio is $1: 1$ (\$1 parts:\$1 labor)
- Must be coupled with solid parts procurement processes
- Keep in mind advancements in technology and a future impact on parts mix

Thank you for the opportunity to present!

Questions?

