

Ford Analysis of Selected Aftermarket Copy Parts VS. Genuine Ford OE Replacement Parts Paul Massie **Ford Customer Service Division Powertrain & Collision Product**

Marketing Manager

Other Ford Attendees

<u>Roger Chen</u> Crash Development Engineer

<u>Dave Bauch</u> Sensor Technical Specialist

Steve Nantau

FCSD Project Strategy Manager

11/03/2010

Special Guests

OEM Ollie

Aftermarket Adam

Why Am I Here?

- At the July 2010, CIC meeting Ford presented the findings of our comparison of selected aftermarket parts to our OEM versions
- We presented Computer Aided Engineering models for the Mustang Bumper Beams and F-Series Radiator Core Support
- I committed then to bring you the results of actual crash testing data if engineering time could be made available in our safety labs

Aftermarket Copy Parts Compared to Our Ford OEM Parts

05-09 Mustang front and rear bumper beams
08-09 Focus front and rear bumper beams
05-09 Mustang bumper isolators
06-08 F-150 bumper brackets
04-07 F-150 radiator core support

Previous Ford Test Findings

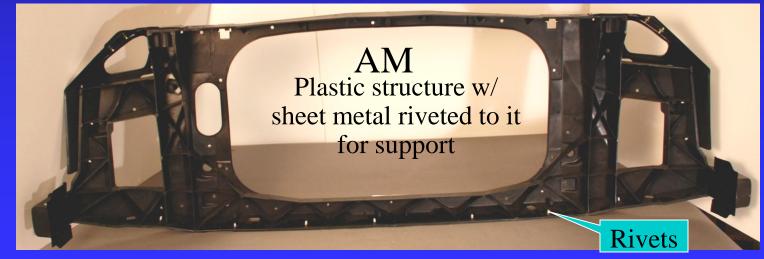
- Ford launched our own investigation of selected aftermarket copy structural parts
- At the July CIC meeting, Ford showed how poorly constructed these aftermarket copy parts were
- Ford shared results that describe in detail the differences between "like," "kind" and "quality" of the tested OEM and aftermarket copy parts
- Ford found tested aftermarket copy parts were inferior and could compromise a vehicle's performance and occupant safety in a crash
- Ford's analysis raised red flags about aftermarket copy collision parts

Ford's Analysis of Aftermarket Copy Parts' Materials, Weights, Thicknesses & Forming Processes

- Ford reproduced the reciprocating saw cross-cut test with similar results as demonstrated at previous venues
- Using an air chisel Ford cut apart aftermarket spot welds which did not meet Ford spot welding specifications (1mm + 1mm thickness requires minimum 5mm nugget size)
- Aftermarket copy parts' metal gauge thickness and weight were less then the OEM with only one exception found
- Aftermarket copy parts' material usage varied significantly from OEM
- There were significant structural differences between the aftermarket copy parts and the OEM parts

Mustang Bumper Isolator

Polystyrene Component is lighter and cells are not as dense


Polypropylene #4 Component is much more sturdy, heavy and dense

11/03/2010

F-150 Radiator Core Support

11/03/2010

F-Series Bumper Bracket Weights

OEM = 6.20 lbs.

AM = 2.85 lbs.

11/03/2010

F-Series Bumper Bracket Thickness

$OEM = \overline{4.68mm}$

AM = 2.21mm

11/03/2010

Without The OEM Part to Compare to...

How Are Body Shops to Know a Good Aftermarket Copy Part From a Bad One ???

Visual Comparison of Aftermarket and OEM Parts

OEM = Ultra-High-Strength Steel (Boron/Martensite) One piece with full seam tig-weld down the center with stiffening beads along both edges

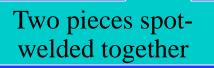
đủ đủ đủ đủ đủ đủ đủ đã đã đã đủ 🕼 🕼

Aftermarket = mild steel Two-piece spot-welded together with no stiffening beads

OEM

AM

Ford Motor Company

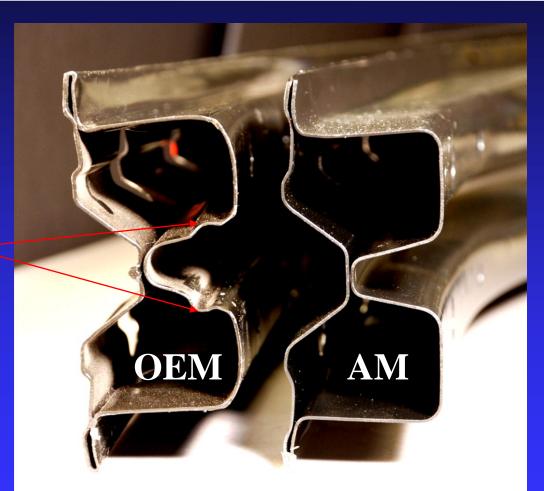


Visual Comparison of Aftermarket and OEM Parts

One piece with full seam tig-weld

OEM

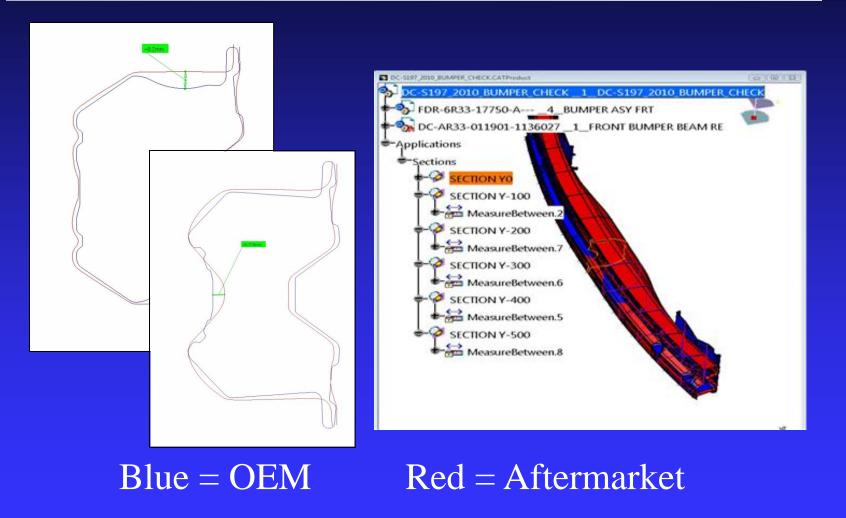
AM



11/03/2010

Visual Comparison of Aftermarket and OEM Parts

Bumper beam longitudinal stiffening beads



Ford Engineers Used CAE Models to Compare Aftermarket Parts to OEM

- "Coupons" were cut from both OE and aftermarket copy parts and sent to Ford Central Labs to determine material composition
- Aftermarket copy parts were electronically scanned so their dimensions could be determined and compared to Ford OE parts using CAE Testing
- CAE models of the aftermarket performance were built by substituting the aftermarket copy parts' material composition and dimensional measurements for the Ford parts

Mustang Aftermarket Bumper Beam Analysis Dimensional Check

11/03/2010

All Steels are Not the Same and are Not "Like Kind"

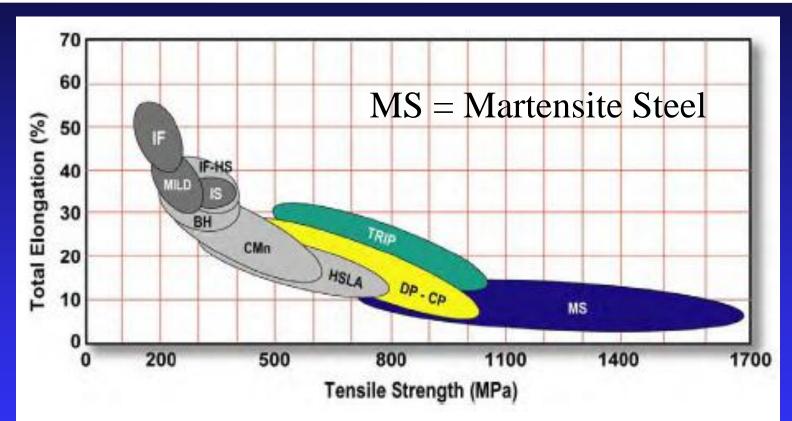
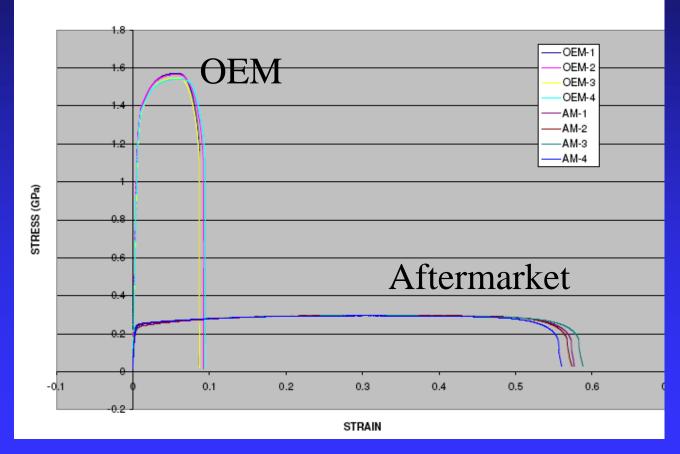


Figure 1-1A - Schematic of AHSS steels (shown in colour) compared to low strength steels (dark grey) and traditional HSS (light grey).^{W-1}

Source : WorldAutoSteel "Advanced High Strength Steel (AHSS) Application Guidelines", Version 4.1, June 2009

11/03/2010

Stress vs. Strain Signatures


Source : WorldAutoSteel "Advanced High Strength Steel (AHSS) Application Guidelines", Version 4.1, June 2009

11/03/2010

Mustang Aftermarket Bumper Analysis vs. OEM

MUSTANG FRONT BUMPER COUPON TESTS

11/03/2010

Mustang Aftermarket Bumper Beam Analysis Front Bumper Coupon Tests

After Market

Sample	.2% Yield MPa	Tensile MPa	% Elongation in 1*
AM-1	223.0	298.5	48
AM-2	225.9	298.3	47
AM-3	235.4	296.6	51
AM-4	239.3	295.8	49
Ave Std Dev	230.9	297.3 1.3	49

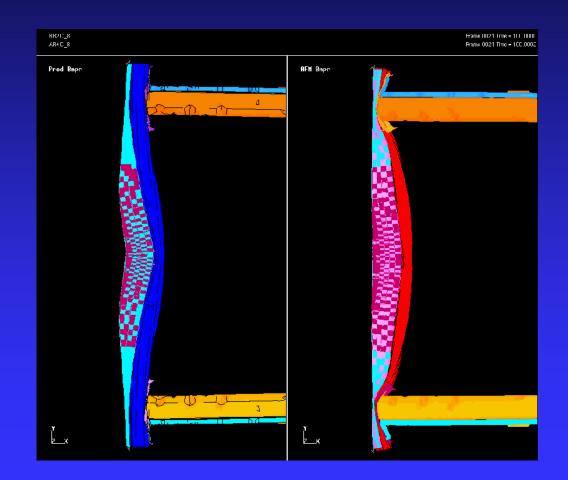
OEM

Sample	.2% Yield MPa	Tensile MPa	% Elongation in 1*
OEM-1	1303.9	1565.6	8
OEM-2	1278.9	1561.3	9
OEM-3	1273.3	1551.2	7
OEM-4	1280.3	1543.7	8
Ave Std Dev	1284.1 13.5	1555.5 9.9	8

11/03/2010

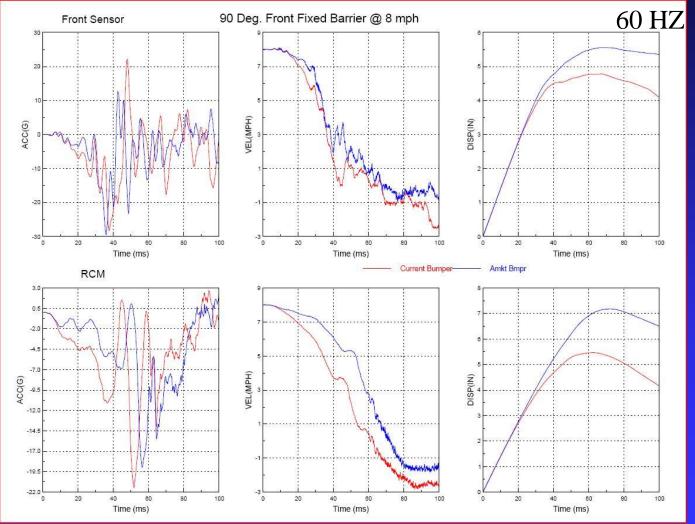
All Steels are Not the Same and are Not "Like Kind"

	Steel Grade	YS (MPa)	UTS (MPa)	Tot. EL (%)
Mild Steels	Mild 140/270	140 A	M 270	42-48
	BH 210/340	AM 210	340	35-41
	BH 260/370	260	370	32-36
	IF 260/410	260	410	34-48
	BH 280/400	280	400	30-34
	IF 300/420	300	420	29-36
	DP300/500	300	500	30-34
	FB 330/450	330	450	29-33
	HSLA 350/450	350	450	23-27
	DP 350/600	350	600	24-30
	TRIP 350/600	350	600	29-33
	DP 400/700	400	700	19-25
	TRIP 400/700	400	700	24-28
	HSLA 420/500	420	500	22-26
	FB 450/600	450	600	18-26
	TRIP 450/800	450	800	26-32
	TWIP 450/1000	450	1000	50-54
	HSLA 490/600	490	600	20-25
igh Strength	CP 500/800	500	800	10-14
	DP 500/800	500	800	14-20
	HSLA 550/650	550	650	19-23
Steels	DP 700/1000	700	1000	12-17
	CP 800/1000	800	1000	8-13
	MS 950/1200	950	1200	5-7
	GP 1000/1200	1000	1200	8-10
	HF 1050/1500 (22MnB5)			-
Ultra High	- Conventional Forming	340	480	23 - 27
	- Heat Treated Post Forming	1050	1500	5-7
1 0 1	MS 1150/1400	1150	1400	4-7
gth Steels	MS 1250/1520	EM 1250 O	EM 1520	3-6


Ultra Hig Strength St

> Source : WorldAutoSteel "Advanced High Strength Steel (AHSS) Application Guidelines", Version 4.1, June 2009 11/03/2010 Ford Motor Company

22



Front Mustang CAE Bumper Beam Analysis Frontal Sensor Test at 8-mph

11/03/2010

CAE Comparison @ 8 mph

11/03/2010

Tested Aftermarket Copy Parts Are <u>NOT</u> of "Like Kind and Quality" to OEM

- Our analysis revealed tested aftermarket copy parts are substantially different in:
 - Raw materials used to make the part
 - Material weight and thickness
 - Manufacturing processes to construct the part
 - Dimensional and structural integrity
 - Performance (for the tested bumper beam and radiator support)
- If a supplier provided the tested parts to Ford for production or service parts they would be rejected as they do not meet our specifications
- The tested parts are not of "Like Kind and Quality" to OEM and should not be used in states requiring "Like Kind and Quality" for collision repair
- The tested parts are not equivalent to or better than OE
- The tested parts do not return the vehicle to pre-accident condition

SO, WHAT'S NEW?

11/03/2010

MUSTANG AFTERMARKET BUMPER TESTING

Ford Safety Engineering

Via Sled Test -- 10/06/2010 Crash Barrier Test -- 10/19-20/2010

11/03/2010

Crash Test Modes Used in Development of the Frontal Safety System (Partial List)

Regulatory & Insurance Institute for Highway Safety

- 16-mph Rigid Frontal Barrier
- 25-mph Unbelted Rigid Barrier
- 30-mph Belted Rigid Barrier
- 35-mph Rigid Barrier (NCAP)
- 25-mph 30 Degree Front Angular Right
- 25-mph 30 Degree Front Angular Left
- 30-mph 30 Degree Front Angular Right
- 30-mph 30 Degree Front Angular Left
- 25-mph 40% Offset Deformable Barrier
- 40-mph 40% Offset Deformable Barrier

11/03/2010

Ford Crash Test Modes (Partial List)

Barriers

- 8-mph Rigid Frontal Barrier Airbag Non-deployment
- 12-mph Rigid Frontal Barrier
- 16-ph Rigid Frontal Barrier
- 22-mph Rigid Frontal Barrier

Angular Rigid Barrier

- 20-mph Angular Rigid Barrier
- **25-mph Angular Rigid Barrier**

40% Offset Deformable Barrier

- 25-mph 40% Offset Deformable Barrier
- 40-mph 40% Offset Deformable Barrier

Front Structural Components Function as a System for Safety

Via Sled Component Test

- Via Sled named after company that installed it (Via Systems)
- Allows for Dynamic component-level testing prior to vehicle-level testing
- Evaluates how a component will react under dynamic crash conditions
- Is used to develop, and evaluate a design before incorporation into a higher-level system

VIA Sled Pre-Test Setup

OEM Bumper Beam

Aftermarket Bumper Beam

11/03/2010

VIA Sled Pre-Test Setup

OEM Bumper Beam

Aftermarket Bumper Beam

11/03/2010

Via Sled Test @ 6 MPH

OEM Bumper Beam

Aftermarket Bumper Beam

2 Video Slides Play In CIC Live Presentation

11/03/2010

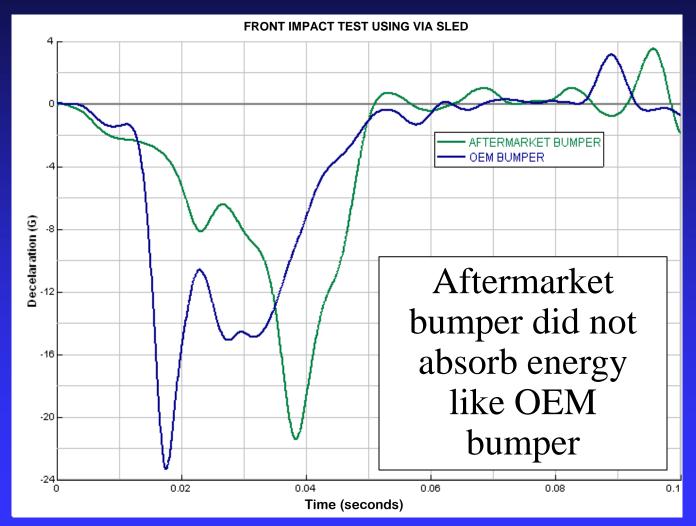
VIA Sled Post-Test LH Side Bumper

OEM Bumper Beam

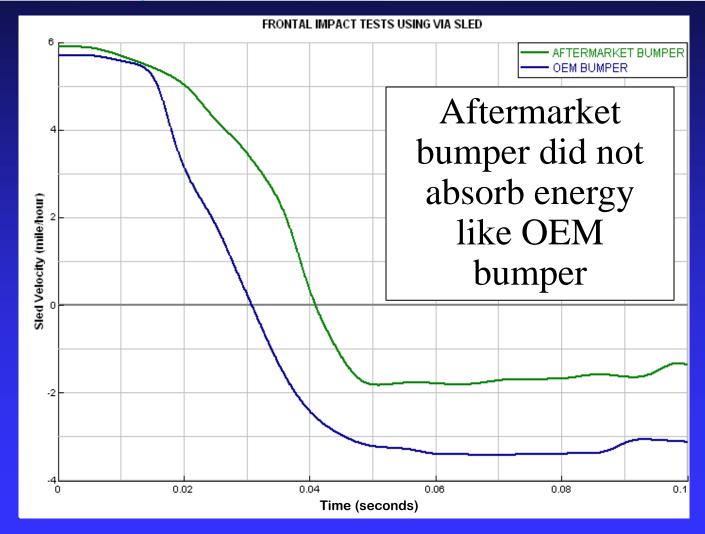
Aftermarket Bumper Beam

VIA Sled Post-Test RH Side Bumper

OEM Bumper Beam


Aftermarket Bumper Beam

11/03/2010


Via Sled Bumper Beam Deceleration Results

11/03/2010

Via Sled Bumper Beam Velocity Results

11/03/2010

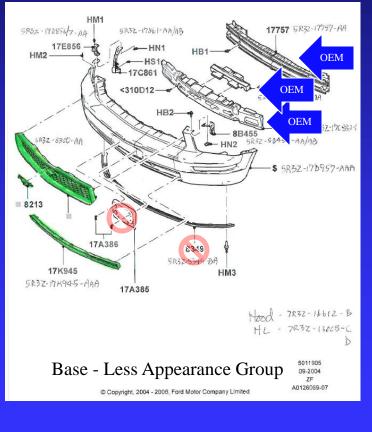
Crash Barrier Testing

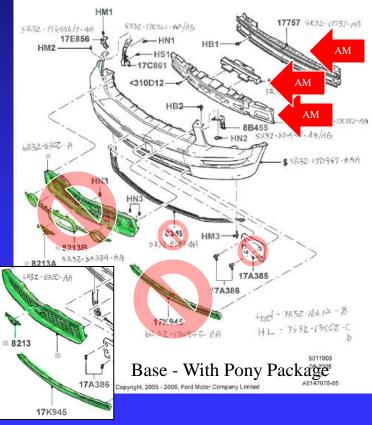
'07 Mustang – Front Bumper Beam, Absorber & Isolator

OEM Bumper Beam Test Vehicle

Aftermarket Bumper Beam Test Vehicle

Vehicle Prep For Crash Barrier 5-MPH Crash


- Vehicles instrumented with accelerometer and test recording equipment
 - Airbag system deactivated consistent with Ford sensor testing protocol
- Production front bumper beams, absorbers and isolators removed and discarded
- Vehicles built back up for crash:
 - Aftermarket vehicle built up with new aftermarket copy replacement bumper beam, absorber, isolator and remaining production parts
 - Production pony upper/lower grilles were replaced with new OEM service parts "base grilles" so they would match the OEM vehicle grilles
 - OEM vehicle built up with new OEM service replacement bumper beam, absorber, isolator and remaining production parts



Crash Vehicles Built Up Using Same Parts (except beam, absorber & isolator)

OEM Bumper Beam Test Vehicle

Aftermarket Bumper Beam Test Vehicle

11/03/2010

OEM Bumper Beam Test Vehicle

Aftermarket Bumper Beam Test Vehicle

This Slide Is A Video In CIC Live Presentation

11/03/2010

OE

AM

11/03/2010

Vehicle Prep For Crash Barrier 8-MPH Crash

- Vehicles front-end components removed and inspected for damage
- Sensors/recording modules left intact
- Vehicles built back up for second crash:
 - Aftermarket vehicle built up with new aftermarket copy replacement bumper beam, absorber and isolator
 - Also received new OEM service replacement fascia, right headlight (due to damage), hood and misc. hardware as needed
 - OEM vehicle built up with new OEM service replacement bumper beam, absorber, isolator
 - Also received new OEM service replacement fascia, hood and misc. hardware as needed

OEM Bumper Beam Test Vehicle

Aftermarket Bumper Beam Test Vehicle

This Slide Is A Video In CIC Live Presentation

11/03/2010

OEM Bumper Beam Test Vehicle

Aftermarket Bumper Beam Test Vehicle

OEM Bumper Beam Test Vehicle

Aftermarket Bumper Beam Test Vehicle

OEM Bumper Beam Test Vehicle

Aftermarket Bumper Beam Test Vehicle

Estimate of Damages As Written by Ex-Insurance Company Adjuster

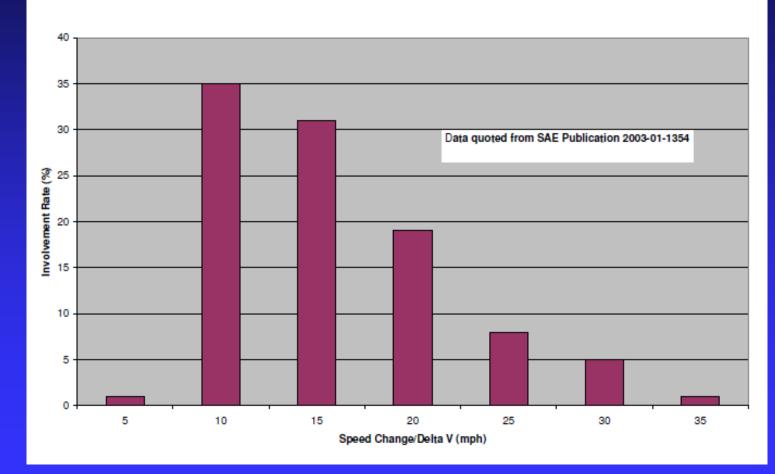
Mustang Crash Barrier Tests OEM vs Aftermarket Bumper Beam, Absorber and Isolator 5-mph and 8-mph flat barrier tests 2007 Mustang V6

Damage Summary

	Tests		Damage Estimate	
5-MPH Hit				
	OEM Bumper Beam Test Vehicle	\$	1,224.38 ^(a)	
	Aftermarket Bumper Beam Test Vehicle	\$	2,982.03 ^(b)	
8-MPH Hit				
	OEM Bumper Beam Test Vehicle	\$	3,440.68 ^(a)	
	Aftermarket Bumper Beam Test Vehicle	\$	3,815.92 ^{(b) (*)}	
	-Additional Repair Cost Driver Airbag	\$	706.00 ^(**)	
	-Additional Repair Cost Both Airbags	\$	1,578.00 ^(**)	

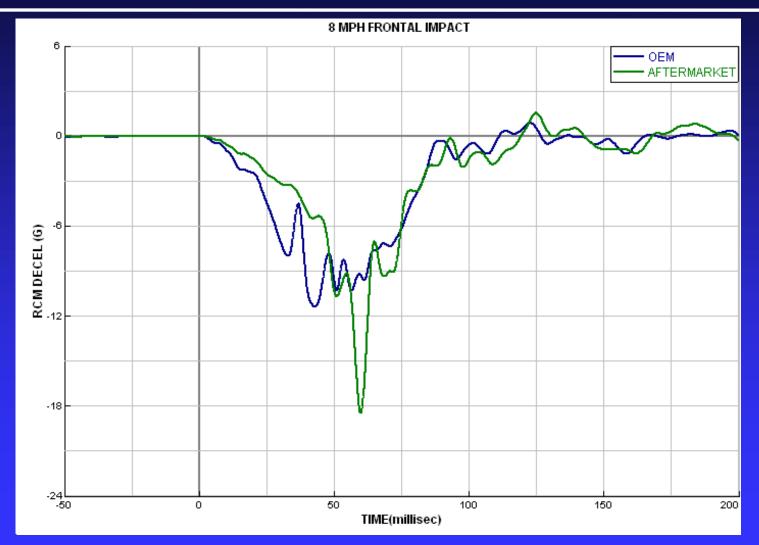
^(a) Used all OE parts prices

^(b) Used aftermarket parts prices for bumper beam, absorber and isolator (OE prices for rest)
 ^(*) Does not include cost associated with airbag deployment in cases where it might deploy
 ^(**) In cases where airbags may deploy when they should not


Labor Rate = \$45.00 per Hour Paint & Materials = \$26.00 per Refinish Hour

11/03/2010

Frequency of Accidents (with injuries) vs. Velocity Change


Frequency of Injury Accidents versus Speed Change

11/03/2010

8-MPH Crash Pulse Comparison OEM vs. Aftermarket Bumper System

11/03/2010

Aftermarket Bumper Beam Effects on Sensor Performance

Crash Energy Absorbed by the aftermarket bumper beam is less than the crash energy absorbed by the OEM bumper beam.

Airbag deployments at low speeds will increase with the aftermarket copy bumper beam, absorber and isolator

Ford's Next Steps

- Continue to Work with:
 - ♦ NHTSA
 - Industry trade associations
 - Automobile Alliance
 - Governmental and regulatory agencies
 - Elected officials

For oversight of aftermarket parts and their impact on the safety of the driving public